Class

com.alpine.model.pack.multiple

GroupByClassificationTransformer

Related Doc: package multiple

Permalink

case class GroupByClassificationTransformer(model: GroupByClassificationModel) extends ClassificationTransformer with GroupByTransformer[ClassificationRowModel] with Product with Serializable

Linear Supertypes
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GroupByClassificationTransformer
  2. Product
  3. Equals
  4. GroupByTransformer
  5. ClassificationTransformer
  6. CategoricalTransformer
  7. MLTransformer
  8. Transformer
  9. Serializable
  10. Serializable
  11. AnyRef
  12. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GroupByClassificationTransformer(model: GroupByClassificationModel)

    Permalink

Type Members

  1. type Row = Seq[Any]

    Permalink

    Shorthand for the input / output type of the apply method.

    Shorthand for the input / output type of the apply method. Equivalent to Seq[Any].

    Definition Classes
    Transformer

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def allowNullValues: Boolean

    Permalink

    Allows the transformer to specify if the apply method can handle null values in the input row.

    Allows the transformer to specify if the apply method can handle null values in the input row.

    e.g. a Null value replacement transformer, or a Naive Bayes transformer would naturally handle null values, but a Linear Regression transformer would not.

    Default value is false.

    returns

    Boolean indicating tolerance for null values in input.

    Definition Classes
    Transformer
  5. def apply(row: Row): Seq[Any]

    Permalink

    This method should be implemented with speed and garbage collection in mind, as it called once per row on potentially huge data-sets.

    This method should be implemented with speed and garbage collection in mind, as it called once per row on potentially huge data-sets.

    This method is not required to be thread-safe.

    row

    The row of input to be scored.

    returns

    The result from applying the trained model to the row.

    Definition Classes
    CategoricalTransformerTransformer
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def classLabels: Seq[String]

    Permalink

    The result must always return the labels in the order specified here.

    The result must always return the labels in the order specified here.

    returns

    The class labels in the order that they will be returned by the result.

    Definition Classes
    GroupByClassificationTransformerCategoricalTransformer
  8. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  10. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  12. lazy val getGroupByValue: (Any) ⇒ Any

    Permalink
    Definition Classes
    GroupByTransformer
  13. def indicesToUse(subModel: ClassificationRowModel): Array[Int]

    Permalink
    Definition Classes
    GroupByTransformer
  14. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  15. val model: GroupByClassificationModel

    Permalink
  16. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. def score(row: Row): ClassificationResult

    Permalink
  20. def scoreConfidences(row: Row): Array[Double]

    Permalink
  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  22. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  23. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Product

Inherited from Equals

Inherited from ClassificationTransformer

Inherited from Transformer

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped