Class

com.alpine.model.pack.multiple

PipelineClusteringModel

Related Doc: package multiple

Permalink

case class PipelineClusteringModel(preProcessors: Seq[RowModel], finalModel: ClusteringRowModel, identifier: String = "") extends ClusteringRowModel with PFAConvertible with Product with Serializable

Used for combining a Clustering model (e.g. K-Means) with preprocessors (e.g. One Hot Encoding).

Annotations
@SerialVersionUID()
Linear Supertypes
Product, Equals, PFAConvertible, ClusteringRowModel, CategoricalRowModel, RowModel, MLModel, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. PipelineClusteringModel
  2. Product
  3. Equals
  4. PFAConvertible
  5. ClusteringRowModel
  6. CategoricalRowModel
  7. RowModel
  8. MLModel
  9. Serializable
  10. Serializable
  11. AnyRef
  12. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PipelineClusteringModel(preProcessors: Seq[RowModel], finalModel: ClusteringRowModel, identifier: String = "")

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def classLabels: Seq[String]

    Permalink

    The total set of classes that the predicted value can take on.

    The total set of classes that the predicted value can take on.

    returns

    The set of possible values for the predicted value.

    Definition Classes
    PipelineClusteringModelCategoricalRowModel
  6. def classesForLoading: Set[Class[_]]

    Permalink

    This should return a representative class from every jar that is needed to load the object during deserialization.

    This should return a representative class from every jar that is needed to load the object during deserialization.

    Default implementation returns the class of MLModel, and the class of the model implementation.

    Definition Classes
    PipelineClusteringModelMLModel
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  9. val finalModel: ClusteringRowModel

    Permalink
  10. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  12. def getPFAConverter: PFAConverter

    Permalink
  13. val identifier: String

    Permalink

    Used to identify this model when in a collection of models.

    Used to identify this model when in a collection of models. Should be simple characters, so it can be used in a feature name.

    returns

    identifier for the model.

    Definition Classes
    PipelineClusteringModelRowModel
  14. lazy val inputFeatures: Seq[ColumnDef]

    Permalink
    Definition Classes
    PipelineClusteringModelRowModel
  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. def outputFeatures: Seq[ColumnDef]

    Permalink
  20. val preProcessors: Seq[RowModel]

    Permalink
  21. lazy val sqlOutputFeatures: Seq[ColumnDef]

    Permalink
  22. def sqlTransformer(sqlGenerator: SQLGenerator): Option[PipelineClusteringSQLTransformer]

    Permalink
  23. def streamline(requiredOutputFeatureNames: Seq[String]): PipelineClusteringModel

    Permalink

    Returns a streamlined version of this model, throwing away parts which are not required to produce the features with names in requiredOutputFeatureNames.

    Returns a streamlined version of this model, throwing away parts which are not required to produce the features with names in requiredOutputFeatureNames.

    Behaviour is undefined if requiredOutputFeatureNames is not actually a subset of outputFeatures.map(_columnName).

    The resulting model may still have more output features than those required (i.e. for ClassificationRowModel implementations which always have the same output features, or for OneHotEncodingModel whose output features naturally group together).

    requiredOutputFeatureNames

    names of the output features that the new model should produce.

    returns

    A model which has the same functionality for those output features listed, but potentially fewer input features.

    Definition Classes
    PipelineClusteringModelClusteringRowModelRowModel
  24. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  25. def transformationSchema: DetailedTransformationSchema

    Permalink
    Definition Classes
    RowModel
  26. def transformer: PipelineClusteringTransformer

    Permalink
  27. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Product

Inherited from Equals

Inherited from PFAConvertible

Inherited from ClusteringRowModel

Inherited from CategoricalRowModel

Inherited from RowModel

Inherited from MLModel

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped