Class

com.alpine.model.pack.multiple

PipelineRegressionModel

Related Doc: package multiple

Permalink

case class PipelineRegressionModel(preProcessors: Seq[RowModel], finalModel: RegressionRowModel, identifier: String = "") extends RegressionRowModel with PFAConvertible with Product with Serializable

Used for combining a Regression model (e.g. Linear Regression) with preprocessors (e.g. One Hot Encoding).

Annotations
@SerialVersionUID()
Linear Supertypes
Product, Equals, PFAConvertible, RegressionRowModel, RowModel, MLModel, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. PipelineRegressionModel
  2. Product
  3. Equals
  4. PFAConvertible
  5. RegressionRowModel
  6. RowModel
  7. MLModel
  8. Serializable
  9. Serializable
  10. AnyRef
  11. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PipelineRegressionModel(preProcessors: Seq[RowModel], finalModel: RegressionRowModel, identifier: String = "")

    Permalink

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def classesForLoading: Set[Class[_]]

    Permalink

    This should return a representative class from every jar that is needed to load the object during deserialization.

    This should return a representative class from every jar that is needed to load the object during deserialization.

    Default implementation returns the class of MLModel, and the class of the model implementation.

    Definition Classes
    PipelineRegressionModelMLModel
  6. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  7. def dependentFeature: ColumnDef

    Permalink

    Used when we are doing model quality evaluation e.g.

    Used when we are doing model quality evaluation e.g. Confusion Matrix, so we know what feature in the test dataset to compare the result to.

    returns

    Feature description used to identify the dependent feature in an evaluation dataset.

    Definition Classes
    PipelineRegressionModelRegressionRowModel
  8. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  9. val finalModel: RegressionRowModel

    Permalink
  10. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  12. def getPFAConverter: PFAConverter

    Permalink
  13. val identifier: String

    Permalink

    Used to identify this model when in a collection of models.

    Used to identify this model when in a collection of models. Should be simple characters, so it can be used in a feature name.

    returns

    identifier for the model.

    Definition Classes
    PipelineRegressionModelRowModel
  14. lazy val inputFeatures: Seq[ColumnDef]

    Permalink
    Definition Classes
    PipelineRegressionModelRowModel
  15. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  16. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  19. def outputFeatures: Seq[ColumnDef]

    Permalink
  20. val preProcessors: Seq[RowModel]

    Permalink
  21. lazy val sqlOutputFeatures: Seq[ColumnDef]

    Permalink
    Definition Classes
    PipelineRegressionModelRowModel
  22. def sqlTransformer(sqlGenerator: SQLGenerator): Option[RegressionSQLTransformer]

    Permalink
  23. def streamline(requiredOutputFeatureNames: Seq[String]): PipelineRegressionModel

    Permalink

    Returns a streamlined version of this model, throwing away parts which are not required to produce the features with names in requiredOutputFeatureNames.

    Returns a streamlined version of this model, throwing away parts which are not required to produce the features with names in requiredOutputFeatureNames.

    Behaviour is undefined if requiredOutputFeatureNames is not actually a subset of outputFeatures.map(_columnName).

    The resulting model may still have more output features than those required (i.e. for ClassificationRowModel implementations which always have the same output features, or for OneHotEncodingModel whose output features naturally group together).

    requiredOutputFeatureNames

    names of the output features that the new model should produce.

    returns

    A model which has the same functionality for those output features listed, but potentially fewer input features.

    Definition Classes
    PipelineRegressionModelRegressionRowModelRowModel
  24. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  25. def transformationSchema: DetailedTransformationSchema

    Permalink
    Definition Classes
    RowModel
  26. def transformer: PipelineRegressionTransformer[RealResult]

    Permalink
  27. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  28. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  29. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Product

Inherited from Equals

Inherited from PFAConvertible

Inherited from RegressionRowModel

Inherited from RowModel

Inherited from MLModel

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped