Class

com.alpine.model.pack.preprocess

OneHotEncodingTransformer

Related Doc: package preprocess

Permalink

case class OneHotEncodingTransformer(pivotsWithFeatures: Seq[OneHotEncodedFeature]) extends Transformer with Product with Serializable

Linear Supertypes
Product, Equals, Transformer, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. OneHotEncodingTransformer
  2. Product
  3. Equals
  4. Transformer
  5. Serializable
  6. Serializable
  7. AnyRef
  8. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new OneHotEncodingTransformer(pivotsWithFeatures: Seq[OneHotEncodedFeature])

    Permalink

Type Members

  1. type Row = Seq[Any]

    Permalink

    Shorthand for the input / output type of the apply method.

    Shorthand for the input / output type of the apply method. Equivalent to Seq[Any].

    Definition Classes
    Transformer

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. def allowNullValues: Boolean

    Permalink

    Allows the transformer to specify if the apply method can handle null values in the input row.

    Allows the transformer to specify if the apply method can handle null values in the input row.

    e.g. a Null value replacement transformer, or a Naive Bayes transformer would naturally handle null values, but a Linear Regression transformer would not.

    Default value is false.

    returns

    Boolean indicating tolerance for null values in input.

    Definition Classes
    Transformer
  5. def apply(row: Row): Row

    Permalink

    This method should be implemented with speed and garbage collection in mind, as it called once per row on potentially huge data-sets.

    This method should be implemented with speed and garbage collection in mind, as it called once per row on potentially huge data-sets.

    This method is not required to be thread-safe.

    row

    The row of input to be scored.

    returns

    The result from applying the trained model to the row.

    Definition Classes
    OneHotEncodingTransformerTransformer
  6. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  7. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  11. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  12. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  13. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  14. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  15. lazy val outputDim: Int

    Permalink
  16. val pivotsWithFeatures: Seq[OneHotEncodedFeature]

    Permalink
  17. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  18. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  20. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Product

Inherited from Equals

Inherited from Transformer

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped